COLLABORATION ON CELESTIAL HOLOGRAPHY

Scientific Overview

Here
Here

Reviews

McLoughlin, T., Puhm, A., & Raclariu, A.-M. (2022). The SAGEX Review on Scattering Amplitudes Chapter 11: Soft Theorems and Celestial Amplitudes. J. Phys. A55(44), 443012. doi:10.1088/1751-8121/ac9a40. https://arxiv.org/abs/2203.13022

Pasterski, S. (2021). Lectures on Celestial Amplitudes. Eur. Phys. J. C81(12), 1062. doi:10.1140/epjc/s10052-021-09846-7. https://arxiv.org/abs/2203.13022

Prema, A. B., Compère, G., Pipolo de Gioia, L., Mol, I., & Swidler, B. (2022). Celestial Holography: Lectures on Asymptotic Symmetries. SciPost Phys. Lect. Notes47, 1. doi:10.21468/SciPostPhysLectNotes.47. https://arxiv.org/abs/2109.00997

Raclariu, A.-M. (2021). Lectures on Celestial Holography. arXiv [Hep-Th]http://arxiv.org/abs/2107.02075

Strominger, A. (2017). Lectures on the Infrared Structure of Gravity and Gauge Theory. Princeton University Press (2018). http://arxiv.org/abs/1703.05448

References

Avery, S. G., & Schwab, B. U. W. (2016). Residual Local Supersymmetry and the Soft Gravitino. Phys. Rev. Lett, 116(17), 171601. doi:10.1103/PhysRevLett.116.171601. https://arxiv.org/abs/1512.02657

Barnich, G., & Troessaert, C. (2011). Supertranslations Call for Superrotations. PoS, CNCFG2010, 010. doi:10.48550/arXiv.1102.4632. https://arxiv.org/abs/1102.4632

Bern, Z., Davies, S., & Nohle, J. (2014). On Loop Corrections to Subleading Soft Behavior of Gluons and Gravitons. Phys. Rev. D, 90(8), 085015. doi:10.1103/PhysRevD.90.085015. https://arxiv.org/abs/1405.1015

Burnett, T. H., & Kroll, N. M. (1968). Extension of the Low Soft Photon Theorem. Phys. Rev. Lett., 20, 86. doi:10.1103/PhysRevLett.20.86

Cachazo, F., & Strominger, A. (2014). Evidence for a New Soft Graviton Theorem. arXiv [Hep-Th]. http://arxiv.org/abs/1404.4091

Campiglia, M., & Eyheralde, R. (2017). Asymptotic U(1) Charges at Spatial Infinity. JHEP, 11, 168. doi:10.1007/jhep11(2017)168. https://arxiv.org/abs/1703.07884

Campiglia, M., & Laddha, A. (2014). Asymptotic Symmetries and Subleading Soft Graviton Theorem. Phys. Rev. D, 90(12), 124028. doi:10.1103/PhysRevD.90.124028. https://arxiv.org/abs/1703.07884

Campiglia, M., & Laddha, A. (2015a). Asymptotic Symmetries of Gravity and Soft Theorems for Massive Particles. JHEP, 12, 094. doi:10.1007/JHEP12(2015)094. https://arxiv.org/abs/1509.01406

Campiglia, M., & Laddha, A. (2015b). Asymptotic Symmetries of QED and Weinberg’s Soft Photon Theorem. JHEP, 07, 115. doi:10.1007/JHEP07(2015)115. https://arxiv.org/abs/1509.01406

Campiglia, M., & Laddha, A. (2015c). New Symmetries for the Gravitational S-Matrix. JHEP, 04, 076. doi:10.1007/jhep04(2015)076. https://arxiv.org/abs/1502.02318

Campiglia, M., & Laddha, A. (2016). Subleading Soft Photons and Large Gauge Transformations. JHEP, 11, 012. doi:10.1007/JHEP11(2016)012. https://arxiv.org/abs/1605.09677

Campiglia, M., & Laddha, A. (2017). Sub-Subleading Soft Gravitons: New Symmetries of Quantum Gravity? Physics Letters. Part B, 764, 218–221. doi:10.1016/j.physletb.2016.11.046. https://arxiv.org/abs/1605.09094

Capone, F., Nguyen, K., & Parisini, E. (2022). Charge and Antipodal Matching Across Spatial Infinity. SciPost Phys.,14(2), 014. doi:10.21468/SciPostPhys.14.2.014. https://arxiv.org/abs/2204.06571

Choi, S., & Akhoury, R. (2018). BMS Supertranslation Symmetry Implies Faddeev-Kulish Amplitudes. JHEP, 02, 171. doi:10.1007/jhep02(2018)171. https://arxiv.org/abs/1712.04551

Dumitrescu, T. T., He, T., Mitra, P., & Strominger, A. (2021). Infinite-Dimensional Fermionic Symmetry in Supersymmetric Gauge Theories. JHEP, 08, 051. doi:10.1007/jhep08(2021)051. https://arxiv.org/abs/1712.04551

Elvang, H., Jones, C. R. T., & Naculich, S. G. (2017). Soft Photon and Graviton Theorems in Effective Field Theory. Phys. Rev. Lett., 118(23), 231601. doi:10.1103/PhysRevLett.118.231601. https://arxiv.org/abs/1511.07429

Gell-Mann, M., & Goldberger, M. L. (1954). Scattering of Low-Energy Photons by Particles of Spin 1/2. Phys. Rev, 96, 1433–1438. doi:10.1103/PhysRev.96.1433

Gross, D. J., & Jackiw, R. (1968). Low-Energy Theorem for Graviton Scattering. Phys. Rev., 166(5), 1287–1292. doi:10.1103/physrev.166.1287

Hamada, Y., & Shiu, G. (2018). Infinite Set of Soft Theorems in Gauge-Gravity Theories as Ward-Takahashi Identities. Phys. Rev. Lett., 120(20), 201601. doi:10.1103/PhysRevLett.120.201601. https://arxiv.org/abs/1801.05528

He, S., Huang, Y.-T., & Wen, C. (2014). Loop Corrections to Soft Theorems in Gauge Theories and Gravity. JHEP, 12, 115. doi:10.1007/JHEP12(2014)115. https://arxiv.org/abs/1801.05528

He, T., Mitra, P., Porfyriadis, A. P., & Strominger, A. (2014). New Symmetries of Massless QED. JHEP, 10, 112. doi:10.1007/JHEP10(2014)112. https://arxiv.org/abs/1407.3789

Jackiw, R. (1968). Low-Energy Theorems for Massless Bosons: Photons and Gravitons. Phys. Rev., 168(5), 1623–1633. doi:10.1103/physrev.168.1623

Kapec, D., Lysov, V., Pasterski, S., & Strominger, A. (2014). Semiclassical Virasoro Symmetry of the Quantum Gravity S-Matrix. JHEP, 08, 058. doi:10.1007/JHEP08(2014)058. https://arxiv.org/abs/1406.3312

Kapec, D., Pate, M., & Strominger, A. (2017). New Symmetries of QED. Adv. Theor. Math. Phys., 21(7), 1769–1785. doi:10.4310/atmp.2017.v21.n7.a7. https://arxiv.org/abs/1506.02906

Kapec, D., Perry, M., Raclariu, A.-M., & Strominger, A. (2017). Infrared Divergences in QED, Revisited. Phys. Rev. D, 96(8), 085002. doi:10.1103/PhysRevD.96.085002. https://arxiv.org/abs/1705.04311

Laddha, A., & Sen, A. (2018). Logarithmic Terms in the Soft Expansion in Four Dimensions. JHEP, 10, 056. doi:10.1007/JHEP10(2018)056. https://arxiv.org/abs/1804.09193

Li, Z.-Z., Lin, H.-H., & Zhang, S.-Q. (2018). Infinite Soft Theorems from Gauge Symmetry. Phys. Rev. D, 98(4), 045004. doi:10.1103/PhysRevD.98.045004. https://arxiv.org/abs/1802.03148

Lysov, V. (2015). Asymptotic Fermionic Symmetry from Soft Gravitino Theorem. arXiv [Hep-Th]. http://arxiv.org/abs/1512.03015

Lysov, V., Pasterski, S., & Strominger, A. (2014). Low’s Subleading Soft Theorem as a Symmetry of QED. Phys. Rev. Lett., 113(11), 111601. doi:10.1103/PhysRevLett.113.111601. https://arxiv.org/abs/1407.3814

Pate, M., Raclariu, A.-M., & Strominger, A. (2017). Color Memory: A Yang-Mills Analog of Gravitational Wave Memory. Phys. Rev. Lett.119(26), 261602. doi:10.1103/PhysRevLett.119.261602. https://arxiv.org/abs/1707.08016

Strominger, A. (2013a). Asymptotic Symmetries of Yang-Mills Theory. JHEP, 07, 151. doi:10.1007/JHEP07(2014)151. https://arxiv.org/abs/1308.0589

Strominger, A. (2013b). On BMS Invariance of Gravitational Scattering. JHEP, 07, 152. doi:10.1007/JHEP07(2014)152. https://arxiv.org/abs/1312.2229

Strominger, A., & Zhiboedov, A. (2016). Gravitational Memory, BMS Supertranslations and Soft Theorems. JHEP01, 086. doi:10.1007/JHEP01(2016)086. https://arxiv.org/abs/1312.2229

Strominger, A. (2021). w1+∞ Algebra and the Celestial Sphere: Infinite Towers of Soft Graviton, Photon, and Gluon Symmetries. Phys. Rev. Lett.127(22), 221601. doi:10.1103/PhysRevLett.127.221601. https://arxiv.org/abs/2105.14346

Weinberg, S. (1965). Infrared Photons and Gravitons. Phys. Rev., 140, B516–B524. doi:10.1103/PhysRev.140.B516

White, C. D. (2011). Factorization Properties of Soft Graviton Amplitudes. JHEP, 05, 060. doi:10.1007/jhep05(2011)060. https://arxiv.org/abs/1103.2981

THIS REFERENCE LIST IS FAR FROM BEING COMPLETE. IF YOU WANT TO CORRECT OR ADD A REFERENCE, PLEASE PUT IT IN ADA FORMAT AND EMAIL TO BIB.CELESTIAL@GMAIL.COM.